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1

Energy, probability and electrons

1.1 Energy quantization

The interpretation of chemical phenomena, and hence the development of

chemistry, owes a great deal to two fundamental concepts: energy and prob-

ability. The scienti®c idea of energy only emerged during the nineteenth

century, whereas the notion of probability is at least two centuries older.

In modern chemistry, there is hardly any ®eld which does not depend upon

one or both of these basic concepts, quite often coupled to each other.

Important examples where energy and probability converge simultaneously

are the second law of thermodynamics and entropy (in the ®eld of chemical

transformations), and quantum chemistry and orbitals (in the ®eld of

structure of atoms and their groupings). Orbitals are the main subject of this

book. In so far as the orbital concept is essential to the study of the structure

of matter it also lies in the realm of physical properties ± such as electric,

magnetic, spectroscopic and related properties ± and of chemical behaviour

of substances, from both the point of view of kinetics and thermodynamics.

As we will brie¯y see below, the links between the ®elds from which the two

previous examples were drawn have long been established; especially the

historical role played by thermodynamics in the foundations of our know-

ledge about matter and light is recalled.

Orbitals are mathematical functions of the coordinates of each electron in

atoms, molecules and other atomic aggregates; we will see that they carry

the dimensions [length]ÿ3/2. They contain information on the probability

distribution for each electron in space and correspond to certain electronic

energy values. There are two most signi®cant non-classical features which

concern the energy of bound electrons. One is that not all values of energy

are allowed: energy quantization. The other is the so-called exchange energy

which is a consequence of the indistinguishability of electrons. In addition,

1



our knowledge of the position and momentum of electrons is aÿected by the

Heisenberg indeterminacy principle.

The concept of energy quantization has its roots in two kinds of experi-

mental data gathered during the second half of the nineteenth century, both

related to light: (a) the discontinuous emission spectra of gaseous elements;

and (b) the distribution of the light intensity emitted by heated bodies as a

function of wavelength for various temperatures (the so-called black-body)

(Fig. 1.1).

The discrete wavelengths � of the emission spectra were found by the end

of the nineteenth century to be reproduced by a simple empirical formula,

the Balmer±Rydberg equation:

1=� � R�1=n21 ÿ 1=n22� �1:1�

where R � 1:097� 105 cmÿ1 is a constant (the Rydberg constant) and n1 and

n2 (n1< n2) are integer numbers. At about the same time (1890), the German

physicist Max Planck (1858±1947, 1918 Nobel laureate in Physics) found

another empirical formula which reproduces the density of radiating energy

due to a black-body, as a function of frequency (�) and temperature (T ):

���, T � � A� 3=�eB�=T ÿ 1� �1:2�

where A and B are constants.

Fig. 1.1 Distribution of the energy output for a black-body (the ideal case of a
body that neither reflects nor transmits light; it just absorbs or emits) at different
temperatures as a function of wavelength.
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The strange results summarized in Eq. (1.1) were in apparent con¯ict with

thermodynamic data, especially with the measured heat capacities of gase-

ous elements. Meanwhile, Planck, taking advantage of his experience in

thermodynamics, sought an explanation of Eq. (1.2) on the basis of the

statistical interpretation of entropy that had been developed in 1896 by

another Austrian physicist, Ludwig E. Boltzmann (1844±1906). Following

previous ideas, Planck began by considering the atoms at the surface of a

black-body as oscillators capable of absorbing and emitting light. In his

studies and as a mathematical convenience, Boltzmann had often begun by

considering the energy in small discrete amounts and only at the end of his

analysis allowed this discontinuity to be removed. Planck used a similar

treatment and considered discrete values 0, h�, 2h�, 3h�, . . . (more or less

populated according to the temperature) for the energies of the atomic

oscillators, � being the frequency of the oscillation and h a constant that, at

the ®nal stage, should be set equal to zero to allow all vibrational energies

to be taken into account. It was then found by Planck that agreement with

experiment (that is, Eq. (1.2)) could only be reached if h remained non-zero

and was set equal to 6.63� 10ÿ34 J s. The theoretically derived counterpart

of Eq. (1.2) is

���,T � � �8�h� 3=c 3�=�eh�=kT ÿ 1� �1:3�

where c is the speed of light in vacuum and k is the Boltzmann constant.

The constant h was later, very properly, named the Planck's constant. Mean-

while, h�, the diÿerence between successive energy values, was called a quantum

of energy for the electromagnetic oscillators. The concept of energy quan-

tization was born (with important contributions from the work of other

physicists, mainly Franck and Hertz). Although the energy diÿerence h�

between successive energy values was later found to be in agreement with the

quantum-mechanical treatment of diatomicmolecules as harmonic oscillators,

the minimum value, zero, considered by Planck should be replaced by h�/2,

the so-called zero-point energy. For an harmonic oscillator, the allowed

vibrational energy values are h�/2, 3h�/2, 5h�/2, . . . .

In 1905, Albert Einstein (1879±1955, 1921 Nobel laureate in Physics),

born in Germany and later a naturalized American, having overcome some

initial disbelief concerning the energy quantization of oscillators, extended

this idea to electromagnetic radiation itself. Radiation carries energy in discrete

amounts ± quanta ± each quantum or `particle' of radiating energy being

E � h� �1:4�

31.1 Energy quantization



where � is now the frequency of the electromagnetic radiation. It has been

recognized that Einstein became much more enthusiastic about Planck's

theory than the author himself, who had great di�culty in discarding the

principles of mechanics ± now called classical mechanics ± on which he had

been brought up. The `particles' of radiating energy were some years later

named photons by the American chemist Gilbert N. Lewis (1875±1946). Thus,

the energy of � photons corresponding to a given frequency � is

E � �h�: �1:5�

The photon model explained more than the black-body radiation. One of

the ®rst great achievements of the new theory of light was the interpretation

of the photoelectric eÿect. The diÿerence between the energy h� of the

incident photon and the minimum energy I necessary to remove an electron

from the structure it belongs to (ionization energy, in the case of gaseous

samples; work function, in the case of condensed phases) appears as kinetic

energy mv 2=2 of the ejected electron:

h� � I � mv 2=2: �1:6�
Thus, electron ejection requires a minimum frequency �, it being irrelevant to

have an intense source of light (many photons per unit of area) if the frequency

is less than that minimum. However, the more intense the beam of light of

appropriate frequency the greater the number of electrons ejected, by a one-to-

one photon±electron interaction.

The proposal of Einstein was not accepted easily. Even as late as 1913,

Planck himself, when joining other distinguished German physicists in recom-

mending Einstein's appointment to the Prussian Academy of Sciences,

would write

. . .That he may sometimes have missed the target in his speculations, as, for exam-
ple, in his hypothesis of light quanta, cannot really be held against him, for it
is not possible to introduce fundamentally new ideas, even in the most exact sciences,
without occasionally taking a risk.

The idea of energy quantization was brought into chemistry with the

application of quantum theory to the electronic structure of atoms in 1913

by the Danish physicist Niels Bohr (1885±1962, 1922 Nobel laureate in

Physics). At the time, Bohr was working in the laboratory of the

New Zealand physicist Ernest Rutherford (1871±1937, 1909 Nobel laureate

in Chemistry) in England, a short time after the nuclear structure for the

atom had been established by Rutherford and his co-workers. Classical

electromagnetic theory predicted that the electrons around the nucleus,

1 Energy, probability and electrons4



because they are being accelerated (centripetal acceleration), should radiate

energy and thus should gradually approach the nucleus, emitting energy in a

continuous manner, until the ®nal collapse into the nucleus. However, it was

known that atoms are not only stable entities but also, when previously

excited, they radiate energy in discrete amounts. Then, inspired by the

quantum theory of Planck, Bohr was forced to admit that the electrons in

atoms exist in stationary energy states, with a well-de®ned energy, which

they can only leave by either absorption or emission of certain discrete

values of energy.

In such states, the electrons (charge ÿe and mass me) would have circular

orbits (radius r) around the nucleus, undergoing transitions between orbits

through either absorption or emission of energy. In particular, for the hydro-

gen atom, the total energy of the electron in circular orbit (the kinetic energy

in the rest frame of the nucleus, mev
2=2, plus the potential energy associated

with the electron±nucleus attraction, ÿke 2=r) could only have certain values.

In order to obtain these values, Bohr began by assuming, as was done by

Planck for the radiation of the black-body, that the energy emitted by the

excited H atom was given by

E � n 0h� 0 �1:7�

with n 0 a positive integer and � 0 a frequency characteristic of the motion of the

electron around the nucleus. The crucial problemwas then to relate � 0 with the

angular velocity of the electron circular motion. Bohr made some conjec-

tures that, however, led to an impasse. When, almost by chance, the Balmer±

Rydberg equation (1.1) was made known to him, the solution became clear

and the following formula could be established for the possible values of

energy of the electron in the H atom:

En � ÿ�2� 2e4me�=h2n 2 �1:8�

with n� 1, 2, 3, . . . a quantum number.

This energy quantization would imply, too, quantization of the angular

momentum of the electron mevr:

mevr � nh=2�: �1:9�

Contrary to what is often found in books, Eq. (1.9) was not the starting point

for the energy quantization expression (1.8), but the other way round. (For

discussion of this point and the presentation of the Bohr model, see, for

example, refs. 1 and 2.)
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However, the theory presented several limitations and could not explain

the spectra of atoms other than monoelectronic atoms. Bohr himself would

recognize the need for a new theory and, indeed, would contribute to it.

In particular, it is noted that, although Eq. (1.8) is reproduced by quantum

mechanics, the angular momentum of the electron is not given by Eq. (1.9);

in particular, the minimum value possible is zero and not h/2� as required

by Eq. (1.9).

1.2 The wave±particle duality, observations and probability

The photon theory of light and Eq. (1.5) received additional con®rmation

when, in 1923, the American physicist Arthur H. Compton (1892±1962, 1927

Nobel laureate in Physics) discovered the eÿect that would bear his name:

the Compton eÿect. When X-rays interact with electrons, the scattered radia-

tion, after transferring some energy to stationary electrons (which are accel-

erated by the electric ®eld of the radiation), has a slightly higher wavelength.

In contrast with classical physics, this increase �� depends only on the

angle � through which the radiation is de¯ected, being independent of the

initial wavelength:

�� � �0 ÿ � � �c�1ÿ cos ��: �1:10�
The constant �c� 2.425 pm is called the Compton wavelength of the electron.

The wavelength shift given by Eq. (1.10) can be easily reproduced theoretically

if the interaction between the radiation and the electron is considered as a

collision between two particles in which the energy and the linear momentum

are conserved (conservation of momentum in the incident direction and in the

direction perpendicular to it). These particles are a photon of energy h� and

linear momentum p� h�/c� h/� and a stationary electron of mass me which

acquires velocity v (Fig. 1.2). It is then found

�c � h=mec � 2:425 pm: �1:11�

Equation (1.5) establishes a bridge between a description of light as an

(electromagnetic) wave of frequency � and as a beam of � energy particles.

If phenomena related to time averages, such as diÿraction and interference,

can be easily interpreted in terms of waves, other phenomena, involving

a one-to-one relation such as the photoelectric and the Compton eÿects,

require a description based on corpuscular attributes. This wave±particle

duality re¯ects the use of one or the other description depending on the

experiment performed, while no experiment exists which exhibits both

aspects of the duality simultaneously.

1 Energy, probability and electrons6



The form p� h�/c� h/� for the linear momentum of a photon can be

obtained by combining the expression for the energy of a photon E� h� and

the expression E�mphc
2 which de®nes the relativistic mass of the photon,

mph, provided that the linear momentum of a photon is made equal to mphc

by analogy with the classical expression mv for the linear momentum of a

particle.

Strongly in¯uenced by the interpretation of the Compton eÿect, the

French physicist Louis Victor, Prince de Broglie (1892±1987, 1929 Nobel

laureate in Physics), suggested in his doctoral thesis in 1924 that the wave±

particle duality for photons could be extended to any particle of momentum

p�mv which, somehow, would then have a wavelength ± the de Broglie

wavelength ± associated with it and given by

� � h=p: �1:12�
Indeed, considering that photons are rather peculiar particles in that they have

zero rest mass and can exist only when travelling at the speed of light, it seems

reasonable that the wave associated with the motion of any particle should

become more and more apparent as the mass decreases, rather than the wave

coming into existence suddenly when the rest mass vanishes.

This was a revolutionary and quite nebulous suggestion, not easily

accepted at the time. If it was not for the intervention of Einstein, excited

with the proposal, Louis de Broglie would most likely have failed his doc-

toral examination. Louis de Broglie found support for his hypothesis and

attempted to clarify the `wave characteristics' of a moving electron by

Fig. 1.2 Conservation of linear momentum in the Compton effect.
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successfully reproducing the Bohr expression (1.9) for the quantization of

the angular momentum of the electron in the H atom. By trying to adjust

waves to a circular orbit, it is found that destructive interference between

waves in successive cycles is only avoided if the orbit perimeter is a whole

number of wavelengths: 2�r� n�. Associating Eq. (1.12), and putting

p�mev, Eq. (1.9) is then reproduced.

The `associated wave' of the de Broglie relation was later replaced by the

quantum-mechanical wavefunction of the particle. But the experimental

proof of the de Broglie hypothesis and his quantitative relation appeared in

1927 with the ®rst observations of diÿraction of electrons by C. Davisson

and L. Germer in America and by G.P. Thomson in Great Britain, using a

nickel crystal and a gold foil, respectively. These results were found to be

analogous to those obtained when using X-rays having wavelengths equal

to the de Broglie wavelengths for electrons. It is interesting to note that,

whereas J.J. Thomson showed at the end of the nineteenth century that the

electron `is a particle', and received the 1906 Nobel prize in Physics mainly

for that, his son G.P. Thomson showed that it `is a wave', and got the same

prize in 1937 (shared with Davisson). In 1932, the occurrence of diÿraction

of helium atoms and hydrogen molecules by crystals was also found to be in

agreement with the de Broglie relation.

The interpretation given by de Broglie for the quantization of the angular

momentum of the electron of H, in the Bohr model, assumes in some sense

that the electron can interfere with itself. Although any diÿraction experi-

ment always presupposes a large number of particles, it is not necessary that

all the particles are considered at the same time; diÿraction can still be

obtained with a sequence of a large number of particles, one at a time. For

example, a diÿraction pattern is gradually built up as photons or electrons

pass through two slits which are separated by a distance of the order of the

wavelength of the particles (Fig. 1.3). In this sense, it can be said that each

particle interferes with itself (refs. 3±5).

Fig. 1.3 Gradual genesis of an electron interference pattern in a double-slit
experiment, with electrons reaching the detector one at a time. (Adapted with
permission from ref. 5.)

1 Energy, probability and electrons8



This result clearly points to the impossibility of considering that the particle

passes through one slit and not through the other; it seems `to pass through

both'. In other words, we can only say that it has 50% probability of

passing through one slit and 50% of passing through the other. A bridge

between the wave characteristics of small particles and probability is begin-

ning to arise. Simultaneously, the notion of trajectory ± from one slit to the

screen or detector ± no longer applies.

In contrast to this, for macroscopic particles, it is possible to identify the

slit through which they pass; trajectories can then be de®ned and no inter-

ference occurs. The passages through each slit are then independent events

and the probability of particles striking a given point on the screen, in a

certain time interval, is just the sum of the probabilities corresponding to

passage through slit 1 and through slit 2.

The interference of microscopic particles leads to a diÿraction pattern

with deviations with respect to the mere sum of the individual probabilities.

The two events are no longer independent. If we wish to state in advance

where the next particle will appear, we are unable to do so. The best we can

do is to say that the next particle is more likely to strike in one area than

another. A limit to our knowledge, associated with the wave±matter duality,

becomes apparent. In the double-slit experiment, we may know the momen-

tum of each particle but we do not know anything about the way the parti-

cles traverse the slits. Alternatively, we could think of an experiment that

would enable us to decide through which slit the particle has passed, but then

the experiment would be substantially diÿerent and the particles would arrive

at the screen with diÿerent distributions. In particular, the two slits would

become distinguishable and independent events would occur. No interfer-

ence would be detected, that is, the wave nature of the particle would be

absent. In such an experiment, in order to obtain information about the

particle position just beyond the slits, we would change its momentum in

an unknown way. Indeed, recent experiments have shown that interference

can be made to disappear and reappear in a `quantum eraser' (ref. 6 and

references therein).

This discussion extends to electrons, and small particles in general, what

we have already found for photons, that is, the appearance of electrons

behaving as classical particles or as a wave depends on the experiment being

performed. On the other hand, it illustrates a basic feature of microsystems:

there is an unavoidable and uncontrollable interaction between the observer

and the observed. No matter how cleverly one devises an experiment, there

is always some disturbance involved in any measurement and such a distur-

bance is intrinsically indeterminate (see also Section 1.3).
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However, the situation concerning the limits to our knowledge depicted

above is not as desperate as it would seem. The fact that we can say that the

next particle in a double-slit diÿraction experiment is more likely to strike

in one area of the screen than another points to the existence of a certain

`determinism' in the statistical result for a large number of identical experi-

ments. We need to consider not each individual microsystem but a statistical

ensemble, that is a great number of non-interacting replicas of a given

microsystem which enable a large number of identical experiments to be

performed; or, alternatively, we need to repeat the same experiment with the

same microsystem, always in the same conditions. For example, one mole of

H atoms corresponding to 6.022� 1023 atoms all in the same electronic state

is an ensemble for measurements about the electron. This characterization

of a collection of microsystems in the same conditions is called state

preparation.

Each individual measurement of any physical quantity yields a value A.

But, independently of any possible observation errors associated with imper-

fect experimental measurements, the outcomes of identical measurements in

identically prepared microsystems are not necessarily the same. The results

¯uctuate around a central value. It is this collection or spectrum of values

that characterizes the observable A for the ensemble. The fraction of the

total number of microsystems leading to a given A value yields the prob-

ability of another identical measurement producing that result. Two param-

eters can be de®ned: the mean value (later to be called the `expected value')

and the indeterminacy (also called uncertainty by some authors). The mean

value hAi is the weighted average of the diÿerent results considering the

frequency of their occurrence. The indeterminacy �A is the standard devia-

tion of the observable, which is de®ned as the square root of the dispersion.

In turn, the dispersion of the results is the mean value of the squared

deviations with respect to the mean hAi. Thus,

�A � h�Aÿ hAi�2i1=2 �1:13�

which is a statistically meaningful expression of precision or reproducibility of

measurements. (For a discussion of precision and accuracy in measurements,

see, for example, ref. 7.)

1.3 Wavefunctions and the indeterminacy principle

Much of what has been said earlier lies at the foundations of the new

mechanics which began with the work of the German physicist Max Born

1 Energy, probability and electrons10



(1882±1970, 1954 Nobel laureate in Physics) in 1924. In quantum mech-

anics, two ensembles which show the same distributions for all the

observables are said to be in the same state. Although this notion is being

introduced for statistical ensembles, it can also be applied to each individual

microsystem (see, for example, ref. 8), because all the members of the

ensemble are identical, non-interacting and identically prepared (Fig. 1.4).

Each state is described by a state function, ÿ (see, for example, ref. 3). This

state function should contain the information about the probability of each

outcome of the measurement of any observable of the ensemble. The wave

nature of matter, for example the interference phenomena observed with

small particles, requires that such state functions can be superposed just

like ordinary waves. Thus, they are also called wavefunctions and act as

probability amplitude functions.

In particle diÿraction experiments, the probability distribution P(x, t) of

the particles, electrons say, in the detector (x coordinate) should be repro-

duced from a wavefunction ÿ(x, t). At each value of time, the function

P(x, t) is large at values of x where an electron is likely to be found and

small at values of x where an electron is unlikely to be found. Using ÿ(x, t)

as a probability amplitude function which, to be more general, is allowed to

be a complex function, the relation is

P�x, t� / ÿ��x, t�ÿ�x, t� �1:14�

where ÿ �(x, t) is the complex conjugate of ÿ(x, t): if ÿ(x, t) is of the form

a� ib, ÿ �(x, t) is aÿ ib and P(x, t)� a2� b2, a necessarily positive quantity.

The relation (1.14) resembles that between the probability of ®nding photons

at a given point and the square of the electromagnetic ®eld at that point.

In a double-slit experiment, two functions can be de®ned, ÿ1(x, t) and

ÿ2(x, t), for the two possibilities of the electron behaviour, one corresponding

to passage through slit 1, the other to slit 2. The appropriate wavefunction

Fig. 1.4 A quantum ensemble is constructed by replicating a microsystem many
times, all members prepared in the same way so that they are in the same state
(represented by ÿ).
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is the superposition of ÿ1(x, t) and ÿ2(x, t), that is,

ÿ�x, t� � ÿ1�x, t� � ÿ2�x, t�, �1:15�

and the probability density function of the electrons at the detector is then

given by

ÿ��x, t�ÿ�x, t� � �ÿ�
1�x, t� � ÿ�

2�x, t���ÿ1�x, t� � ÿ2�x, t��
� ÿ�

1�x, t�ÿ1�x, t� � ÿ�
2�x, t�ÿ2�x, t� � ÿ�

1�x, t�ÿ2�x, t�
� ÿ�

2�x, t�ÿ1�x, t�: �1:16�

The last two terms in Eq. (1.16) represent interference. This can be made

more clear if the complex functions are written in terms of their magnitudes

and phases:

ÿ1�x, t� � jÿ1�x, t�j exp�i�1�x, t��
ÿ2�x, t� � jÿ2�x, t�j exp�i�2�x, t��:

�1:17�

It is easily found that substitution of Eq. (1.17) into Eq. (1.16) leads to:

ÿ��x, t�ÿ�x, t� � jÿ1�x, t�j2 � jÿ2�x, t�j2 � 2jÿ1�x, t�j jÿ2�x, t�j cos��1 ÿ �2�:
�1:18�

The interference term depends on the phase diÿerence �1ÿ�2 of the prob-

ability amplitude functions.

We have mentioned in Section 1.2 that when enough information is

available to determine which path is taken by the particle, the interference

disappears, and it reappears when the path cannot be determined. The expla-

nation for this is not that quantum waves refrain from interfering when

observed too closely, it is just that information about the path is available

when the quantities measured are not sensitive to the phase diÿerence �1ÿ�2,

but quantities that are sensitive to this phase diÿerence can be measured

when those that determine the path are not (ref. 6).

The example of the double-slit experiment already shows that the physical

information contained in a state function is inherently probabilistic in nature.

In the next chapter this feature will be further developed leading to the

central concept of this book: orbitals. For example, the orbitals of the H atom

are wavefunctions ÿ(x, y, z) that enable the electron probability density to

be known: ÿ �(x, y, z) ÿ(x, y, z). The idea of a trajectory (or orbit) is replaced

by the idea of a probability distribution.
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The above interpretation of the wavefunction, linking a mathematical

function with a physical state, is due to Born and provides the basis of the

most widely held view of quantum mechanics: the Copenhagen interpreta-

tion. Helped by this interpretation, other scientists rapidly developed the

theoretical machinery for extracting information about position, momentum

and other observables from wavefunctions, during the years 1925±1927.

In 1925, the German physicist Werner Heisenberg (1901±1976, 1932 Nobel

laureate in Physics), disciple of Max Born, represented the physical quanti-

ties by complex numbers in a mathematical treatment that Born clari®ed by

establishing a relation with the properties of matrices. This work was in part

developed in collaboration with the German physicist Pascual Jordan whom

Born met, by accident, during a train journey.

In the same year, the English mathematician (of Swiss father) Paul Dirac

(1902±1984, 1933 Nobel laureate in Physics) developed a new formalism

strongly related to classical mechanics through a collection of postulates,

which is equivalent to that of Heisenberg but more easy to understand. Almost

at the same time, the Austrian physicist Erwin SchroÈ dinger (1887±1961, 1933

Nobel laureate in Physics, prize shared with Dirac) proposed a wave approach

to quantummechanics, inspired by the de Broglie theory which he had initially

classi®ed as nonsense. As we shall see in Chapter 2, the form of his wave

equation is analogous to the equations of classical electromagnetic theory, the

wavelength being given by the de Broglie relation. It is a diÿerential equation,

involving second-order derivatives of the state function of the system, ÿ, one

of the unknowns, and a second unknown which is the energy E. By

introducing basic conditions which ÿ must obey because of its relation with

probability densities, the solution of the wave equation can lead to a discrete

set of E values; once these values are known, the wavefunctions ÿ associated

with them are then obtained. In this way, energy quantization appears as a

direct consequence of the physical interpretation of the wavefunction.

Initially, SchroÈ dinger's theory was not well accepted by either Heisenberg

or Dirac, but gained the support of Born. The situation changed when, in

1926, SchroÈ dinger showed that his theory was equivalent to those of

Heisenberg and Dirac. Beginning with the Heisenberg±Born equations

involving matrices to represent physical quantities, SchroÈ dinger showed that

these could be represented by appropriate operators (see Chapter 2). In the

particular case of the electron in the H atom, the operator corresponding

to the observable energy is related to the Hamilton function of classical

mechanics, modi®ed previously by Dirac.

In 1927, Heisenberg identi®ed incompatible observables whenever the

commutative property of multiplication does not apply to the corresponding
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operators and showed that any attempt to simultaneously measure two incom-

patible physical quantities A and B necessarily introduces an imprecision in

each observable. No matter how the experiment is designed, the results are

inevitably indeterminate, and the indeterminacies �A and �B cannot be

reduced to zero. Instead their product is always larger than a constant of the

order of Planck's constant. The easiest practical way to recognize incompa-

tible variables is to note that their dimensions multiply to joule second. For

example, position x ( y, or z) and momentum px ( py, or pz) are fundamen-

tally incompatible observables, in the sense that knowing the precise value

of one precludes knowing anything about the other. Thus,

�x� px � h=4� �y� py � h=4� �z� pz � h=4�: �1:19�

This is known as the Heisenberg indeterminacy principle (also called uncer-

tainty principle by some authors). It has to do with precision and not with

accuracy. This situation has already been met in Section 1.2 when referring to

the double-slit experiment.

On the scale of classical mechanics, the indeterminacies can, at least in

principle, be made su�ciently small to be negligible. Then, the order in which

we measure position and linear momentum is arbitrary. Irrespective of this

order, we may have, for example, 2m for the position x of a body (with

respect to some origin) and 3 kgm sÿ1 for its momentum px which implies

xpx� 2m� 3 kgm sÿ1� pxx� 3 kgm sÿ1� 2m� 6 kgm2 sÿ1� 6 J s.However,

for an ensemble of microsystems, the indeterminacies are no longer simul-

taneously negligible. In such a case, we need matrices or operators to represent

those observables, and xpx 6� pxx. Heisenberg showed that xpxÿ pxx� ih/2�

(see Chapter 2). This is equivalent to saying that the order of preparation of

the ensemble for adequate measurements is not irrelevant, as shown below.

Let us assume that we begin by preparing a state ÿ so that identical mea-

surements of the momentum px in the various members of the ensemble

have an arbitrarily small dispersion. Then, if, in a separate experiment we

prepare the same state ÿ and make identical individual measurements of the

position x, the result is a huge dispersion of the x values. If, on the other

hand, we begin by forcing (preparing) the ensemble to a state ÿ 0 in order to

yield an arbitrarily small indeterminacy of position, then there will be a huge

indeterminacy in the momentum values obtained through identical mea-

surements of the various microsystems in state ÿ 0 (Fig. 1.5). The

impossibility of reducing both indeterminacies to an arbitrarily small value

is intimately related to the fact that ÿ is diÿerent from ÿ 0. In Chapter 2, we

will say that no `eigenfunction' for the position operator (corresponding to a

1 Energy, probability and electrons14



dispersion-free distribution of results) is an eigenfunction for the momentum

operator, and vice versa.

It should be noted that, since we are talking about measurements in

separate experiments, strictly speaking it is not the measurement of x (or px)

that directly aÿects the measurement of px (or x); it is the preparation pro-

cess of the ensemble for the two measurements which, being the same,

relates the two measurements. Thus, the usual statement the impossibility of

knowing simultaneously with accuracy (rather, precision) both position and

momentum of a particle should be read as the impossibility of preparing a

state for which both position and momentum can be determined with arbitrarily

small indeterminacies (see, for example, ref. 9).

The limitation re¯ected in the Heisenberg principle is implicit in Nature. It

has nothing to do with a particular apparatus or with the imperfections of

experimental techniques. A particle cannot simultaneously have a precise value

of x and a precise value of px. This is diÿerent from assuming that each

particle really does have de®nite values for both position and momentum,

Fig. 1.5 Identical preparation of an ensemble for measurements of two incom-
patible observables A and B, so that one of them is affected by an arbitrarily small
indeterminacy; the indeterminacy in the other is necessarily huge.
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but these de®nite values cannot be determined because measurement of one

property alters the value of the other (see, for example, ref. 10).

What is being said applies to incompatible observables. For example, the

position in coordinate x and the linear momentum in the y direction are not

incompatible. Therefore, it is possible to have an ensemble prepared in such

a way as to enable arbitrarily small indeterminacies in both x and py. That

is, it is possible to ®nd identical wavefunctions irrespective of the order of

the preparations for both measurements (ÿ�ÿ 0) and

�x� py � h=4�: �1:20�

The connection with wave±matter duality can be further developed

(see, for example, ref. 11). For an ensemble in a state of well-de®ned linear

momentum p (along the x direction, say) we can de®ne a unique de Broglie

wavelength �� h/p and the particle can be at any point (in the x direction)

with equal probability (this point will be considered again in Chapter 2).

Conversely, if we know the position of the particle precisely, then the wave-

function must assume a large value at the point considered and very small

values outside. Since such a function can be obtained by superposing a large

number of waves of various wavelengths which interfere constructively at

the point and destructively otherwise, the existence of various � values

means that all information about the linear momentum is lost (Fig. 1.6).

Obviously, if we cannot specify the position and the momentum of a par-

ticle, at any instant, we cannot maintain the concept of trajectory for small

particles. This idea involves statements about the past, the present and the

future of the system, and only the present is accessible to experimental

determination and, even so, with limitations. According to Heisenberg, it

Fig. 1.6 A small indeterminacy in x as the result of appropriate superposition of
waves having a variety of wavelengths: information about linear momentum p�
h/� is entirely lost (see, for example, ref. 12).
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makes no sense to ascribe properties to a system that cannot, at least in

principle, be subjected to experimental determination. Properties of macro-

systems exist by themselves, independently of being measured, and then we

can speak both of precision and accuracy of measurements. This is not the

case with microsystems. Here, properties are latent until they are the object

of observation and measurement (at least in principle), and precision rules.

To conclude this introduction to quantum mechanics, it is interesting to

note the omnipresence and the agglutinating role of Planck's constant.

Indeed, if it was set equal to zero, all the construction which began with

black-body radiation and the quantization of radiation energy, followed by

the wave±matter duality and the Heisenberg principle . . . would fall down.

In addition, the intrinsic angular momentum (spin) of some particles,

including the electron, would be forced to be zero, with many consequences

at the theoretical and practical levels.
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